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EDITOR'S SUMMARY

The paper presents three methods for the calculation of the impedance of

'skin effect' bars of cage type induction machines.

(1) Using the effective penetration depth method presented by
5

Liwschitz-Garik

(2) By the use of a transmission line comprising a series of elemental

networks as a model of the bar.

(3) By representing the bar as a network comprising a few sections, each

section being related to a discreet portion of the bar.

Methods (2) and (3) above are similar to those presented by Babb and

Williams4 and are also applicable to the analysis or design of multicage rotors.
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I INTRODUCTION

The above investigation was carried out for the following reasons:

absence of a general method of calculation of displacement current in complex

cross-section cages and inaccuracies in calculating some types of bars, (" dual-

cage. A single cage deep-grooved motor can be considered as a special case of a

dual-cage machine in which the throat between the cages has the same width as

the neighbouring bar sections. Calculating such a bar by a method used for dual-

cage motors will give results different from calculations based on a single-cage

method. This points to an inconsistency of approach in the two methods whic'

from a physical point of view has no justification.

To illustrate the mechanism of the displacement current a model of a groove

in a ferromagnetic core can be used with three bars placed at different depths

and short-circuited at both ends of the core (Fig 1). The currents I, 12, 13

flowing in the bars produce a magnetic field and if the core material permeabil-

ity is very high (P = ) the field lines in the groove will be perpendicular tor

the sides. In the case illustrated in Fig I they will be straight if the distor-

tions at the groove top and bottom are ignored. If the groove sides are inclined

and particularly if they are not flat, the magnetic field becomes complex and

calculations difficult.

For alternating current in the bars the described form of flux will induce

voltages U1 , U2, U3 (Fig 1). The currents due to these voltages flow in the

direction opposite to the flux-inducing currents giving different values of

superimposed currents in particular bars; minimum in bar I and maximum in bar 3.

The model shown in Fig I is particularly useful in numerical calculations of dis-

placement current.

With non-uniform current density distribution the energy losses in the

system are higher and the magnetic field energy is reduced. This can be inter-

preted as an increase in resistance and a reduction in permeance in comparison

with direct current conditions.
I

The analytical solution of the problem has a long history and electrical

machines text books include formulae for rectangular and trapezoid bars- calcula-

tions of different cross-sections present considerable difficulties. Satisfactory

results have been achieved in recent times using a numerical method and treating

the bar as a network of elementary conductors. A bar equivalent circuit method

C is also of interest and has been used so far for double-cage motor calculations.

H The method can be developed for use on any chosen bar complexity provided that the

bar can be divided into n straight segments.
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2 ANALYTICAL tTHODS

These methods are based on solving Maxwell equations for a particular case

of a bar placed in a ferromagnetic groove. The simplest is the case of a rec-

tangular bar and for a large height to width ratio the problem can be solved as

a single dimension system. Recently solutions have been provided for roctangular,
9trapezoid and circular sections in two-dimension fields but they are VL , com-

plex and difficult to use in technical calculations.

'Classical' method

In practice the following definitions of the displacement current coeffi-

cient are used:

(1) Coefficient for resistance kr  equal to the .- io of the bar alternating

current resistance R and direct current resistance R0

R
k r =(R)
r 0

(2) Coefficient for reactance k equal to the ratio of the bar ac reactancex

X and reactance calculated for dc conductance X0

X A
k - Z Z (2)
x X0 0

where X is the permeance coefficient and X = W11OA with w 0 = 4,O- 7 H/m

For a rectangular bar a height coefficient, also known as 'bar reduced height'

is calculated

r = ha

where h is the actual bar height (mm), and a is calculated from the following

equation:

b 2': = -- -- Y (3) ,
ba tb 2

b b bar width, b = slot width.



In cast cages groove and bar dimensions are identical and the ratio b /bs

is taken as equal to I . In general bars are produced from non-magnetic material

for which P = w0 The specific electrical conductivity of the material Y is

taken in MS/m and frequency cw2 = 2rfIs (s = slip; f1  stator current fre-

quency). Equation (3) can therefore be written as

= 2 f fIsylO-7 (4)

or alternatively as

a = 1.987 x 10-3 /Sf Y  5)

Displacement current coefficients for a rectangular bar are represented by

O5(2 ; -2

k () 0 .5(e 2- e ) + sin 2Fkr () F 2t, e-2F,
0.5(e + e ') - cos 2,

e2 F, -2r)
0.5(e - e" - sin 2k X 2r (- = (7)

'it, 0.5(e 2 " + e 2  
- cos

The above relationships are shown graphically in Fig 2. For trapezoidal grooves

it is necessary to allow for the effect of the bar sides tapering by use of the

ratio c = b2 /b) This makes the formula more complicated and in practice

graphs are used as in Refs 2 or 6. These graphs have been produced for

straight flux lines and the error resulting from the simplification

2 > c > 0.5 is negligible. The displacement current coefficient for such cases

can be calculated relatively simply using an equivalent bar method.

The equivalent bar method

The current density distribution in a rectangular bar cross-section is

approximately exponential due to the displacement current. An actual rectangular

bar with non-uniform current distribution can be represented by an assumed bar

with uniform current density distribution. Such a bar will have the same width

but its height h. is chosen to make its current losses equal to the losses

in the real bar; ,'( the assumed bar direct current resistance is equal to the

real bar alternating current resistance. It follows therefore that

R = R () (8)

and an appropriate value h. can be calculated.
,IY



Similarly height h. can be determined for the equivalent bar which hasix

its direct current permeance equal to the real bar alternating current permeance

xz = x ) (9)

Direct current resistances of the equivalent and real conductor .I be

inversely proportional to their cross-sections, ie

SObh h

R = R - R bh R h (O)
z OS 0bh. O h.

Z ir ir

Using equation (8) we obtain

h h
hir ( (II)

For reactances we have (allowing that for a rectangle X h/3b)

h. /3b h.
x = ix = Ix
z 0 h/3b o-0 (12)

In the above equation h. is the 'penetration depth' calculated withiX

regard to the reactance

h. = hip(s) (13)
ix

Applying the described method to a trapezoidal bar its total cross-section,

SO = 0.5h(b I + b2 ) (14)

determining the direct current resistance, is first calculated.

The equivalent bar cross-section

S = 0.5h. (bI + b3r (15)z irIr3 (

The dimension b3r depends on the penetration depth h. From geometric

relationship we calculate

0

b2h + bh bh
2r 2ir (16)b3r h C



Introducing the relationship h. = h/h() we obtain

b2p() + bI - b2 (3r7)

and finally since kr S o/S

(bI + b2)W()

r b 2 12 () - 11 + b i

tor b = b2  relationships for a rectangle are obtained.

An appropriate formula for k can be derived by calculating the ratiox

A z/0 for two trapezoids of same apex angle 6 : one with base b3x and the

other with base b1  (Fig 3). Width b3x depends on () from the

relationship

b 3x =(b - b2)p) + 2

Calculating kx  for a trapezoid use is made of an appropriate formula

for permeance X . Making

1 b2 2 b 2= -- and £2 =b

l - 3x

then the following relationship is obtained

2
2 - 3 Th E

k C 4 , + (19)
2 - I E - 3 In E
2+ E - 1

Similar relationships can be derived for different bar shapes. It

appears that the penetration depth for every shape is the same as for an

equivalent rectangular bar of the same total height. All four bar shapes shown

in Fig 3 have therefore the same penetration depth: h. described by equationir

(1) and h. by equation (13). It can also be said that the displacementlx

current coefficient k = R /R for each bar is equal to the ratio of the
nr Z0
0 total bar area to the shaded area in Fig 3 (dependent on h ). Similarly the

J
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coefficient k is equal to the permeance ratio of the shaded area (dependentx

on h ix) to the total area. The calculation of the displacement current coef-

ficient k is reduced to a comparison of the two areas, and coefficient kr x

is obtained from a comparison of the two permeance values calculated for direct

current. Calculation of permeance can sometimes be difficult.

Method of elementary conductors network

A solid bar in a groove can be divided into thin strips along the lines

of field without changing the effects taking place in the bar. It can be

assumed that strips are so thin that there is no displacement current in them

(ie their current density distribution is uniform). The strips are insulated

from each other by a negligible insulation thickness and are connected at both

sides of the core forming a network of elementary conductors. Each conductor

is characterised by its cross-section area S. , median line length between1

groove walls c. and conductivity of the conductor material Yc
1

If the neighbouring field lines are parallel then the permeance coef-

ficient of ith element can be calculated from

S.
A = -j. (20)

C.
2

The unit resistance (calculated for unit bar length) of ith element is

given by

= . (21)

The inductance of the elements is calculated from

i=n i=n
imaxm - I___0 _______.

0 , i i=n

Lm~ i _ ,k) i--max(m,k) (22)
Lk 0 E . (2

i=max(m,k)

The coupling system between the elements is similar to that shown in

Fig 1. To calculate the inductance L a sum X. is taken starting with CD
m,k 1 %-n

the larger from the values of m or k ; this corresponds to the flux coupling

(containing) the elements m and k . The elements are numbered starting from



the groove bottom up. If m = k the relationship gives the value of the self-

inductance. For m I k we obtain mutual inductance result'rng from the magnetic

coupling of elements m and k .

For a system of n elementary conductors the following n equations can

be written

V = I (rI + jwLll) + 12jwL12 + ... + ,iLIn

V = I jcwL 2 1 + 12(r 2 + juwL22) + ... + I j,.L
"I ?n 211

. . . . . . . . . . . . . . . . . . . . . . .

V = IJWL nl + 2juLn2 + ... + I n(rn + Lnn)

and

It + I) + 13 + .. + In (24)

These equations can be transformed (using equation (22))

V = 1lr 1 + Jwo1 + 1 + I2) + "". + '

V =[oo +J~ 2 I 1) + A3(lI + 19 + I3) + "" + " iJ

n

v Irn n Z i (25)

II
The equivalent circuit shown in Fig 4 corresponds to the system of equa-

tions (25). Inductance calculation using formula (22) leads to a small error

since it is assumed that the flux produced by the ith element is contained com-

pletely within the element. However, the flux produced by the ith element

current is closed above it and therefore to calculate the pcrncimnct, an

upper line length of the element is more appropriate than its middle line.
8Klokow suggests a double system of elementary conductors mutually displaced

and one being used for the calculation of permeance and the other for resistance.
-H
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Formation of pairs of elementary conductors appears to be more practical. T

calculate X. a pair 'i' and 'i + I' is taken and for calculating r. the1 1

pair 'i' and 'i - I' . In this case equations (20) and (21) take the follow-

ing form:

r. - (S ) (26)

S. + Si
1 1 

(27)
i 2

C.i

The value of i is changed by 2, ie the elements (connected as pairs) are
numbered i = 2,4,6... ,n, counting from the bar bottom. The zone Si+ = 0

and n must be even. In consequence also the form of the general equations is

changed. For the elements connected as pairs the currents 1I 14, 169 etc will

occur. The n/2 set of equations can be solved by different methods including

matrix calculus. It is more convenient, by side subtraction of equations, to

transferm the set into the following general form

i

r. X. i

_i 2 I. + J1 i . (28)
(i(i+2 ) i+2 ) 1 r(i+2) 2..

In the obtained sequence of equations the first current, ie 12 , remains

unknown. It can be assumed initially that 12 = I with all other currents then

referred to 12 * If all branch currents in the network are known the total cur-

rent I is calculated as their sum. This current can be calculated as at

normalized quantity (in amperes) using an equivalent circuit for the whole machine

(for a given load or slip). However, for the calculation of the displacement

current coefficient or impedances this is not necessary. If the current It  is

known (It and all branch currents are referred to 12 ) it is possible to change

the scale of the currents by referring them to I t  It is sufficient to make

the scale change only for one conductor. For convenience calculations are car-

ried out separately on real and imaginary parts denoted A and B respectively.

In accordance with convention the current in the first conductor numbered

i = 2 is equal to 1, i A2 = 1, B2 = 0 and 12 = 1 + jO . For a conductor

numbered i + 2 (ie 4,6,8 ..., n)
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A (i+2) 1 Ai-' 1 B. (29)
~~(i+2) r(+) 1 O (i+2)Lj

n

B (i+2 B. + ." (30)
(i+2) r(i+2) (i+2) 2

Scale change is then made taking as reference current I = A t + jBt

This is done only for nth conductor.

The components of current I' , reduced to I will be equal to:
n t

A' A n At (31)
n A2 +B2

At t

BI R i n t (32)n A 2 + B 2

t t

If R t  is an equivalent resistance of the whole circuit and Xt  its

reactance, R and X are calculated from the circuit equation

V = I t (R t + jX t )

and from type (28) equation for the nth conductor. In this equation the sum

currents I t  is equal to I t  and therefore

R = A'r (33)n nn

X nB'r + Op0n (34)

Reactance X0  is calculated from equation

X0  W1 0 x (35)

The permeance coefficient A0 can be calculated from the system of ele-

mentary conductors for low frequency (as a limiting value for w 0 0) or by a

C different method, eg from the magnetic field energy in the slot.
F'
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Resistance R0  is calculated from

0I

R0= n (36)

2

and displacement current coefficient from

R
k (37)

0

X

k (38)
x X0

The elementary conductor method can be used to calculate any slot described

by data tables of i, St, cti' t " The calculation can be developed further to

include current density distribution and losses in bar cross-section. Accuracy

of calculation depends on the number of the elementary conductors used and on

satisfying the requirement of division only along the lines of field. Depending

on groove shape n is taken to be from 50 to 150. Definition of the line dia-

gram of the slot magnetic field and the preparation of the data table present

considerable difficulties. Existing methods of field distribution calculation

are too complex to be practicable. Ref 10 gives a method of approximate repro-

duction of slot field by division into segments of typical field diagram.

Equivalent circuits with lumped parameters

The unit of calculation is in this case a segment, ' a simple shaped

(rectangular, trapezoid or circular) part of the slot as in Fig 5.

The permeance of each segment can be calculated, taking into account Che

actual field diagram, by for example conformal mapping. Segments containing

current carrying conductors are characterised by three permeance coefficients:

X' - calculated for current carrying segments, A" - calculated for non-current

carrying segments, X(m) - representing the coupling of the segment with other

segments. In the case of a segment not containing current carrying conductors

A' and A are equal to zero, as are the coefficients Xm and A" for the seg-

ment at the bcttom of the slot. Refs 7 and 11 include a method of permeance

coefficient calculation.

' A. . . . . - - '"L' "-+ '' i,- .. . . . . 2 .. . .. ,- - ' , . .



13

Segments can be considered to be separate bars separated from each other

in the groove by a very thin insulating layer and connected by short-circuiting

rings at both ends of the core. A cross-section of a segment should be suffi-

ciently small so that its current density distribution could be considered as

uniform. If by a natural division of a bar the above condition is not satisfied

then an additional division of larger segments will be necessary. The top parts

of the bar exhibit largest current density variations. It can be said that a

set of voltage equations for circuits of particular segments is represented by

an equivalent circuit in Fig 6. The circuit as shown applies to four segments

but it can be easily developed for any larger number. In general, it is not

necessary to divide the bar into more than seven segments. The task involves

calculating the equivalent circuit resistance Rt and reactance Xt  for a

given frequency w . The solution of the circuit begins with the segments

numbered 1 and 2, ie from the groove bottom up. Intermediate results are useful

and will be included. Branches I and 2 will be substituted by one of the follow-

ing form

Zt! = R t] + jXt]

in which
121 + 2R X2

RIR2(R + R + X12 + X2R1
Rtl = 2R1  

2  
1  2  2 (39)

(R1 + R2 ) 2 + 
(XI + X2)2

Branch Z t1 is joined with branch 3 giving Z t2 with elements

2 2

R IR2(R + R) +X R + R2 
ti 3 i ti 3 3 t] 41

xt2 2 2~ (41)

(R 1 + R3)
2 + (X I + X3 )2

RtR3(Rtl + R ) + R2 R + R 4

Rt2X

=Xt]X 3 (Xt + X3) RtiX 3  3 ti
t2 (Rti + R3 )

2 + (Xti + X3 )
2  +X 3m (42)

Continuing similarly we obtain

. . . .....
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RR(R R)+x2 R 2R
R(t2R4(t2 4 t2 4 4 t2 (43)

t3 (Rt2 + R4 ) + (Xt2 + x 4 )

+ X4) + R2X+R 2

Sxt2X 4 (t 2 ++ 4 2  4  
4 Xt2 X (44)

0t3= (R t2 + R4)2 + (Xt2 + X4)2 4m

etc.

In order to calculate the displacement current coefficient it is necessary,

in accordance with equations (37) and (38), to calculate values R0  and X0

They are obtained from equations (36) and (35) as the limit when w = 27f - 0

Substituting

! IR! = , R2
YS1  2 YS2

etc. (S,, S2 - cross-section area of segments 1, 2, etc) we obtain

R01= y(S + S 2) (45)

S2X2+ S2 X

x = 22 2 + X (46)
01 (S + S 2 2m

R02 1 (47)y(S + S2 + S3 )

2 2 2

S2X + (S + S201
3 3 I 2 0X02 - 2 +X 3m (48)(S + S2 + S 3)

03= Y(S + S2 + S3 + (49)

S2 S 3S ) X 2

X 03 =2 + X 4m (50) r(S + S + S + S

1 2 3 4
0

In the case of a smaller number of segments, eg 3 the calculation ends

after Rt2, Xt2, R0 2, X02

t 2-' . . .. . .. .. .0 2"' 0 2r . . . . . .. "'. . .
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Reactances depending on the values of the permeance coefficients of the

segments are calculated from

X! = cx(xl X11 - X()251
X2 2 2

X = c A (m) (52)
2 x X2

3 = (A' - An(m)) (53)X3  = x( 3 3

.X (m)) (54)

4 2 3 X

X =c (0" + X m) - ())5)
,, C X .(m) _ X(m) ) (56)

3m x(4 3 4(5

X c(M) (57)
4m x^4

It is easy to see the construction of the formulae. In three segments

calculation we take formulae for X, X2, X3, X2m' X3m; X3m will be equal to

cA(M) because the permeance coefficients for higher numbered segments are

equal to zero.

It is now necessary to define the units. It is more convenient to work

in 4S with y being in MS/m . The constant c x = po = 0.87 2f = 7.896f.

For 50 Hz, c = 394.78. The calculation is carried out for a unit length of thex
bar (I m). Having calculated R t and Xt for the rotor circuit, these values

are then transferred to the stator circuit and the equivalent circuit is solved

for the whole motor.

3 CONCLUSIONS

The three methods presented here of approximate calculation of displace-

ment current in the bars of a cage make it possible to solve almost all the

problems occurring in practice. The elementary conductor method is the most

general but the high effort involved in the calculations demands the use of

computers. The method of segmentation requires much less effort since each

-Af
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segment 'replaces' 10-20 elementary conductors. As an example the following

calculations were carried out for a trapezoidal bar with bases b, = 10,

b 2 = 5, height h = 32 mm . Conductivity y = 23 MS/m . The method of elrntn-

tary conductors with circular arc division into n equal height layers produced

the following results.

n = 12 k 2.41 k = 0.74
r x

24 2.48 0.73

48 2.5 0.73

In calculations using the segments method the bar was first divided into

two equal height parts and then the upper part was similarly divided again.

The results obtained were

n = 2 k = 2.15 k = 0.81

r x
3 2.43 0.75

4 2.5 0.74

5 2.51 0.74

With division into n = 5 segments the heights were equal to 16, 8, 4, 2,

2 mm. It can be seen that n 4 already gives an adequately accurate result.

The described method has particular significance in calculating double-cage

motors since none of the previously used methods offered sufficiently general

and accurate solutions.

0

.. .. I ,
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Figs 1 - 6
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Fig 1 Model of a groove with bars £,,.
illustrating the displacement
current mechanism

Fig 2 Graphs ( ) and y( ) for a
rectangular bar

a) __(, - j d e ) -F bn

VO IOU)

_____ _ _______ L 1;0 ;

i Fig 4 An equivalent circuit for a cage bar
. " -_ _idivided into n elementary conductors

Fig 3 Bars of different shapes but same
'penetration depth': (a) equivalent
rectangular cross-section bar;
(b), (c), (d) cross-sections used
in practice
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